Reconnaissance Partners Perspectives: Tsunami

Harry Yeh
Oregon State University

The Cordex Leicester of Leonardo da Vinci: Folio 24 r

Tsunami Scours FEMA55: Coastal Construction Manual

11.6.11.3 Localized Scour (Tsunami Conditions)

Dames and Moore, in *Design and Construction Standards for Residential Construction in Tsunami-Prone Areas of Hawaii* (1980), suggest that scour depth depends on soil type and that scour depths in areas up to 300 feet from the shoreline can be determined as a percentage of the stillwater depth \mathbf{d}_{s} , as shown in Table 11.5.

Soil Type	Expected Depth (% of d _s)
Loose sand	80%
Dense sand	50%
Soft silt	50%
Stiff silt	25%
Soft clay	25%
Stiff clay	10%

Tsunami Scours

• Field observation stimulates research activities.

• Research outcomes guide the field investigation.

Scour Formation: 2004 Indian Ocean Tsunami

Runup height 4.1 m Inundation depth 0.95 m above the floor; Scour depth 1.2 m Scour span 5.0 m.

Sri Lanka: photo by Patrick Lynett Scour depth \approx 2.0 m

The 2004 Indian Ocean Tsunami: India

Foundation Failure: the 1993 Okushiri Tsunami

Capsized breakwater due to foundation failure at Aonae Port, Japan

Scour Hole in the Harbor of Kesen-numa, Japan: the 1960 Chile Tsunami

Scour hole more than 8 m deep at the entrance to the port.

After Takahashi et al. (1992)

QuickTime™ and a Video decompressor are needed to see this picture.

Tsunami Scours

- Maximum scour occurs during the (runup/drawdown) process
 - \Rightarrow need to examine core samples in tsunami scours.
- Traditional shear stress modeling (Shields) does not predict rapid scour at the end of drawdown
 - ⇒ momentary liquefaction plays a role in tsunami scours.

Spatial variation of 'enhanced' scour depth

Yeh & Li, 2008 (ICSE-4)

Observed Scour Depths

Scour depth 1.2 m

Scour depth 2.0 m

Scour depth: 4 m

Scour depth: 8 m

• IUGG/UNESCO Tsunami Commission.

• SDSC/NSF Tsunami Data Repository.

SDSC/NSF Tsunami Reconnaissance Data Repository

